
Downloaded from: justpaste.it/et0dz

DevOps — 7 Best Practices for Implementation

An extension to the preferred agile model, DevOps’ adoption has been growing faster than
ever, gaining tremendous fame in the past few years. Keeping communication and integration
as the key, it leverages on collaboration between operations, development and businesses,
thus ensuring seamless and efficient deliveries.
The increasing number of organizations leveraging on DevOps to unleash the untapped
potential and close barriers amidst their departments to build quicker and robust software and
execute a seamless delivery shows the potential DevOps has.

Proven Productivity Increase
Data proves that organizations following DevOps have seen a business expansion by 38%, as
well as a productivity increase by 51%. However, despite understanding DevOps and its
working modalities, many companies struggle to efficiently incorporate DevOps into their IT
framework.
 
Perhaps because this is a mindset and cultural change to be adopted rather than as a
checklist for mere actions.
Listed below are some DevOps best practices that can certainly help.
 

1. Automation
2. Integrated Configuration Management

https://justpaste.it/et0dz
https://jpcdn.it/img/d566c404fbc2c5e15d35e84701d710d8.png
https://jpcdn.it/img/d566c404fbc2c5e15d35e84701d710d8.png
https://justpaste.it/redirect/et0dz/https%3A%2F%2Fwww.webomates.com%2Fdevops%2F
https://justpaste.it/redirect/et0dz/https%3A%2F%2Fwww.webomates.com%2Fdevops%2F


3. Integrated Change Management
4. Continuous Integration
5. Continuous Testing
6. Continuous Delivery
7. Security — Monitoring & Alerts

Automation
The implementation of DevOps depends a lot on automation; for configurations, infrastructure
set-up development and testing, and deployment — to ensure more frequent yet quality
delivery is a possibility.
 
For instance: early identification of errors in development gives more opportunities for them to
be rectified while in the development phase itself. Hence, taking into account the continuous
operations in parallel with ongoing development, a nimble automated testing framework adds
more fuel to the SDLC. Test automation can simply be achieved by determining certain test
cases, then running and analyzing their relevance in different scenarios, and achieving
quicker, consistent, accurate deliveries.
 
The automation starts at the code generation level, continues till the code has moved to
production, and even post it to monitor the application. The end-to-end DevOps pipeline from
CI, CD, CT and performance of the application is automated.
 

Integrated Configuration Management
 
As the essential part of operations, configuration management enables agility — the base to
DevOps.
Optimizing the use of existing systems in place and maintaining system-wide configurations
across networks, servers, application, storage, and other managed services, configuration
management enables the development teams to look at the bigger picture.
 
 
It promotes the utilization of the existing services during the software development rather than
investing time and efforts in reinventing the new services from scratch.
 

Integrated Change Management

https://justpaste.it/redirect/et0dz/https%3A%2F%2Fwww.webomates.com%2Fdevops%2F


 
With technology constantly evolving, it is essential for organizations to be agile with change
management and yet deliver on time with optimal quality. Hence defining processes that are
required to be followed to cater to these changes, and the methods and techniques for
execution — all play an equally important role.
 
The DevOps principles to expedite faster releases breaks down these changes into smaller
sets and automates their management.
 
Overall the organization needs to have an open mindset and defined processes for any such
‘changes’ and that can be done by defining the scope of change, updating systems with the
new scope and including all teams to relook at the impacts–hence communication and
collaboration that are the base for DevOps.

Continuous Integration
To expedite releases, organizations have developers working on independent features
parallelly which are later to be clubbed. With each one making changes to their own set of
codes, without knowing the impact it may create to the other set of features, the ‘merge day’s
as the integration days are called, are mostly full of errors, resulting in tedious and time-
intensive.
 
Even when it comes to rollbacks, CI is helpful. However, a roll-back strategy needs to be
thought through well as it differs from application to application.
 
Continuous Integration practices allow developers to carry out integrations sooner and
frequently and with the help of CI tools, simplifying the integration challenges by automating
code tests to ensure they aren’t broken and will integrate seamlessly. Hence continuous
testing is important for both CI and CD.
 
Thus ensuring the development of high-quality software by providing regular and immediate
feedback, and fixing them. Read for more about this blog :DevOps — 7 Best Practices for
Implementation
 
 
#DevopsContinuousTesting  #DevOps  #DevopsTestingServices  #DevopsTesting

https://justpaste.it/redirect/et0dz/https%3A%2F%2Fwww.webomates.com%2Fblog%2Fci-cd%2Fis-continuous-testing-important-for-ci-cd%2F
https://justpaste.it/redirect/et0dz/https%3A%2F%2Fwww.webomates.com%2Fblog%2Fci-cd%2Fis-continuous-testing-important-for-ci-cd%2F
https://justpaste.it/redirect/et0dz/https%3A%2F%2Fwww.webomates.com%2Fblog%2Fdevops%2Fdevops-7-best-practices-for-implementation%2F
https://justpaste.it/redirect/et0dz/https%3A%2F%2Fwww.webomates.com%2Fblog%2Fdevops%2Fdevops-7-best-practices-for-implementation%2F

