(135

Downloaded from: justpaste.it/60xg3
=

2. GA-based TSP TSP is known as an NP-hard program that causes a computational
explosion. For instance, finding the shortest route through 36 cities needs to examine 36! (=
36 x 35 x ... x 1) combinations. GA is quite effective to reduce TSP’s computation time while
reaching a semi-optimal trip (but no the shortest path). Consider a travel through 36 cities,
each named with one of the 36 characters such as A~Z and 0~9.
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 is one possible trip. In GA, this string and
each city in it can be considered as a chromosome and a gene respectively. We will first
generate 50,000 different trips or chromosomes, and then repeat 150 iterations or so-called
generations, each including: (1) evaluate(): evaluates the distance of each trip and sorts out
all the trips in the shortest-first order. Memorize the current shortest trip as a tentative answer
if it is shorter the previous. (2) select(): selects the shortest 25,000 trips as parents. (3)
crossover(): generates 25,000 off-springs from the parents. More specifically, we spawn a pair
of child[i] and [i+1] from parent[i] and [i+1]. (4) mutate(): randomly chooses two distinct cities
(or genes) in each trip (or chromosome) with a given probability, and swaps them. (5)
populate(): populate the next generation by replace the bottom 25,000 trips with the newly
generated 25,000 off-springs.

3. Crossover Algorithm The key to GA-based TSP is to design a suitable crossover algorithm.
A typical crossover generates child[i] by combining the first half of parent[i]'s genes and the
last half of parent[i+1]'s genes, whereas gives child[i+1] the last half of parent[i]'s genes and
the first half of parent[i+1]'s genes. However, this crossover does not work in TSP. For
example in a TSP program for visiting only eight cities, consider two parents: parent][i] =
ABCDEFGH parent[i+1] = HGABFECD Their children will be:: child[i] = ABCDFECD
child[i+1]=HGABEFGH

Child[i] and [i+1] will end up with revisiting CD and GH respectively. To address this problem,
we will use a greedy crossover algorithm: We select the first city of parent[i], compares the
cities leaving that city in parent[i] and [i+1], and chooses the closer one to extend child[i]’s trip.
If one city has already appeared in the trip, we choose the other city. If both cities have already
appeared, we randomly select a non-selected city. Thereafter, we generate child[i+1]’s trip as
a complement of child[i].

https://justpaste.it/60xg3

